Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 112022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35076392

RESUMO

Stable adherence to epithelial surfaces is required for colonization by diverse host-associated microbes. Successful attachment of pathogenic microbes to host cells via adhesin molecules is also the first step in many devastating infections. Despite the primacy of epithelial adherence in establishing host-microbe associations, the evolutionary processes that shape this crucial interface remain enigmatic. Carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) encompass a multifunctional family of vertebrate cell surface proteins which are recurrent targets of bacterial adhesins at epithelial barriers. Here, we show that multiple members of the primate CEACAM family exhibit evidence of repeated natural selection at protein surfaces targeted by bacteria, consistent with pathogen-driven evolution. Divergence of CEACAM proteins between even closely related great apes is sufficient to control molecular interactions with a range of bacterial adhesins. Phylogenetic analyses further reveal that repeated gene conversion of CEACAM extracellular domains during primate divergence plays a key role in limiting bacterial adhesin host tropism. Moreover, we demonstrate that gene conversion has continued to shape CEACAM diversity within human populations, with abundant human CEACAM1 variants mediating evasion of adhesins from pathogenic Neisseria. Together this work reveals a mechanism by which gene conversion shapes first contact between microbes and animal hosts.


Trillions of bacteria live in and on the human body. Most of them are harmless but some can cause serious infections. To grow in or on the body, bacteria often attach to proteins on the surface of cells that make up the lining of tissues like the gut or the throat. In some cases, bacteria use these proteins to invade the cells causing an infection. Genetic mutations in the genes encoding these proteins that protect against infection are more likely to be passed on to future generations. This may lead to rapid spread of these beneficial genes in a population. A family of proteins called CEACAMs are frequent targets of infection-causing bacteria. These proteins have been shown to play a role in cancer progression. But they also play many helpful roles in the body, including helping transmit messages between cells, aiding cell growth, and helping the immune system recognize pathogens. Scientists are not sure if these multi-tasking CEACAM proteins can evolve to evade bacteria without affecting their other roles. Baker et al. show that CEACAM proteins targeted by bacteria have undergone rapid evolution in primates. In the experiments, human genes encoding CEACAMs were compared with equivalent genes from 19 different primates. Baker et al. found the changes in human and primate CEACAMs often occur through a process called gene conversion. Gene conversion occurs when DNA sections are copied and pasted from one gene to another. Using laboratory experiments, they showed that some of these changes enabled CEACAM proteins to prevent certain harmful bacteria from binding. The experiments suggest that some versions of CEACAM genes may protect humans or other primates against bacterial infections. Studies in natural populations are needed to test if this is the case. Learning more about how CEACAM proteins evolve and what they do may help scientists better understand the role they play in cancer and help improve cancer care. Studying CEACAM evolution may also help scientists understand how bacteria and other pathogens drive protein evolution in the body.


Assuntos
Aderência Bacteriana/fisiologia , Escherichia coli/fisiologia , Helicobacter pylori/fisiologia , Filogenia , Animais , Antígenos CD/genética , Antígenos CD/metabolismo , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Clonagem Molecular , Células HEK293 , Interações entre Hospedeiro e Microrganismos , Humanos , Pan paniscus , Domínios Proteicos
2.
Cell Host Microbe ; 28(5): 629-631, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33181073

RESUMO

The human genome encodes an arsenal of proteins that protect us against deadly viruses. Could microbes provide clues regarding the origin of these pathogen defenses? In a recent study published in Nature, Bernheim et al. demonstrate that the mammalian antiviral protein viperin is far more ancient and conserved than previously appreciated.


Assuntos
Antivirais/imunologia , Imunidade , Vírus/imunologia , Animais , Humanos , Imunidade Inata/imunologia , Proteínas/genética , Viroses/virologia , Vírus/efeitos dos fármacos , Vírus/genética
3.
Nat Ecol Evol ; 3(11): 1576-1586, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31636426

RESUMO

The most common fermented beverage, lager beer, is produced by interspecies hybrids of the brewing yeast Saccharomyces cerevisiae and its wild relative S. eubayanus. Lager-brewing yeasts are not the only example of hybrid vigour or heterosis in yeasts, but the full breadth of interspecies hybrids associated with human fermentations has received less attention. Here we present a comprehensive genomic analysis of 122 Saccharomyces hybrids and introgressed strains. These strains arose from hybridization events between two to four species. Hybrids with S. cerevisiae contributions originated from three lineages of domesticated S. cerevisiae, including the major wine-making lineage and two distinct brewing lineages. In contrast, the undomesticated parents of these interspecies hybrids were all from wild Holarctic or European lineages. Most hybrids have inherited a mitochondrial genome from a parent other than S. cerevisiae, which recent functional studies suggest could confer adaptation to colder temperatures. A subset of hybrids associated with crisp flavour profiles, including both lineages of lager-brewing yeasts, have inherited inactivated S. cerevisiae alleles of critical phenolic off-flavour genes and/or lost functional copies from the wild parent through multiple genetic mechanisms. These complex hybrids shed light on the convergent and divergent evolutionary trajectories of interspecies hybrids and their impact on innovation in lager brewing and other diverse fermentation industries.


Assuntos
Saccharomyces cerevisiae , Saccharomyces , Cerveja , Fermentação , Hibridização Genética
4.
PLoS Genet ; 15(4): e1007786, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30946740

RESUMO

At the molecular level, the evolution of new traits can be broadly divided between changes in gene expression and changes in protein-coding sequence. For proteins, the evolution of novel functions is generally thought to proceed through sequential point mutations or recombination of whole functional units. In Saccharomyces, the uptake of the sugar maltotriose into the cell is the primary limiting factor in its utilization, but maltotriose transporters are relatively rare, except in brewing strains. No known wild strains of Saccharomyces eubayanus, the cold-tolerant parent of hybrid lager-brewing yeasts (Saccharomyces cerevisiae x S. eubayanus), are able to consume maltotriose, which limits their ability to fully ferment malt extract. In one strain of S. eubayanus, we found a gene closely related to a known maltotriose transporter and were able to confer maltotriose consumption by overexpressing this gene or by passaging the strain on maltose. Even so, most wild strains of S. eubayanus lack native maltotriose transporters. To determine how this rare trait could evolve in naive genetic backgrounds, we performed an adaptive evolution experiment for maltotriose consumption, which yielded a single strain of S. eubayanus able to grow on maltotriose. We mapped the causative locus to a gene encoding a novel chimeric transporter that was formed by an ectopic recombination event between two genes encoding transporters that are unable to import maltotriose. In contrast to classic models of the evolution of novel protein functions, the recombination breakpoints occurred within a single functional domain. Thus, the ability of the new protein to carry maltotriose was likely acquired through epistatic interactions between independently evolved substitutions. By acquiring multiple mutations at once, the transporter rapidly gained a novel function, while bypassing potentially deleterious intermediate steps. This study provides an illuminating example of how recombination between paralogs can establish novel interactions among substitutions to create adaptive functions.


Assuntos
Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces/genética , Saccharomyces/metabolismo , Trissacarídeos/metabolismo , Sequência de Aminoácidos , Cerveja/microbiologia , Proteínas de Transporte/química , Evolução Molecular Direcionada , Fermentação , Proteínas Fúngicas/química , Conversão Gênica , Genes Fúngicos , Hibridização Genética , Proteínas de Transporte de Monossacarídeos/química , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Monossacarídeos/metabolismo , Filogenia , Proteínas Recombinantes de Fusão/química , Saccharomyces/crescimento & desenvolvimento , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos , Especificidade da Espécie , Simportadores/química , Simportadores/genética , Simportadores/metabolismo
5.
Sci Adv ; 5(1): eaav1869, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30729163

RESUMO

A growing body of research suggests that the mitochondrial genome (mtDNA) is important for temperature adaptation. In the yeast genus Saccharomyces, species have diverged in temperature tolerance, driving their use in high- or low-temperature fermentations. Here, we experimentally test the role of mtDNA in temperature tolerance in synthetic and industrial hybrids (Saccharomyces cerevisiae × Saccharomyces eubayanus or Saccharomyces pastorianus), which cold-brew lager beer. We find that the relative temperature tolerances of hybrids correspond to the parent donating mtDNA, allowing us to modulate lager strain temperature preferences. The strong influence of mitotype on the temperature tolerance of otherwise identical hybrid strains provides support for the mitochondrial climactic adaptation hypothesis in yeasts and demonstrates how mitotype has influenced the world's most commonly fermented beverage.


Assuntos
DNA Mitocondrial/genética , Saccharomyces/genética , Termotolerância/genética , Cerveja/microbiologia , Quimera/genética , Temperatura Baixa , Fermentação/genética , Loci Gênicos , Genoma Mitocondrial/genética , Hibridização Genética , Sequenciamento Completo do Genoma
6.
Mol Biol Evol ; 33(7): 1641-53, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26979388

RESUMO

Transposable elements (TEs) comprise large fractions of many eukaryotic genomes and imperil host genome integrity. The host genome combats these challenges by encoding proteins that silence TE activity. Both the introduction of new TEs via horizontal transfer and TE sequence evolution requires constant innovation of host-encoded TE silencing machinery to keep pace with TEs. One form of host innovation is the adaptation of existing, single-copy host genes. Indeed, host suppressors of TE replication often harbor signatures of positive selection. Such signatures are especially evident in genes encoding the piwi-interacting-RNA pathway of gene silencing, for example, the female germline-restricted TE silencer, HP1D/Rhino Host genomes can also innovate via gene duplication and divergence. However, the importance of gene family expansions, contractions, and gene turnover to host genome defense has been largely unexplored. Here, we functionally characterize Oxpecker, a young, tandem duplicate gene of HP1D/rhino We demonstrate that Oxpecker supports female fertility in Drosophila melanogaster and silences several TE families that are incompletely silenced by HP1D/Rhino in the female germline. We further show that, like Oxpecker, at least ten additional, structurally diverse, HP1D/rhino-derived daughter and "granddaughter" genes emerged during a short 15-million year period of Drosophila evolution. These young paralogs are transcribed primarily in germline tissues, where the genetic conflict between host genomes and TEs plays out. Our findings suggest that gene family expansion is an underappreciated yet potent evolutionary mechanism of genome defense diversification.


Assuntos
Proteínas Cromossômicas não Histona/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Duplicação Gênica , Animais , Elementos de DNA Transponíveis/genética , Evolução Molecular , Feminino , Inativação Gênica , Variação Genética , Genoma de Inseto , Instabilidade Genômica , RNA Interferente Pequeno/genética , Seleção Genética
7.
Science ; 350(6267): 1552-5, 2015 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-26680200

RESUMO

Speciation, the process by which new biological species arise, involves the evolution of reproductive barriers, such as hybrid sterility or inviability between populations. However, identifying hybrid incompatibility genes remains a key obstacle in understanding the molecular basis of reproductive isolation. We devised a genomic screen, which identified a cell cycle-regulation gene as the cause of male inviability in hybrids resulting from a cross between Drosophila melanogaster and D. simulans. Ablation of the D. simulans allele of this gene is sufficient to rescue the adult viability of hybrid males. This dominantly acting cell cycle regulator causes mitotic arrest and, thereby, inviability of male hybrid larvae. Our genomic method provides a facile means to accelerate the identification of hybrid incompatibility genes in other model and nonmodel systems.


Assuntos
Proteínas de Transporte/fisiologia , Ciclo Celular/genética , Drosophila melanogaster/genética , Drosophila simulans/genética , Genes Letais/fisiologia , Especiação Genética , Isolamento Reprodutivo , Alelos , Animais , Proteínas de Transporte/genética , Quimera/genética , Cruzamentos Genéticos , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila simulans/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Genes Essenciais/genética , Genes Essenciais/fisiologia , Genes de Insetos , Genes Letais/genética , Masculino , Dados de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...